Ученые Петербургского Политеха первыми в мире обнаружили новый эффект в стеклах

Ученые Петербургского Политеха первыми в мире обнаружили новый эффект в стеклах

0 40

Исследователи Научного центра мирового уровня «Передовые цифровые технологии» Санкт-Петербургского политехнического университета Петра Великого впервые обнаружили оптический эффект, который в перспективе позволит снизить стоимость телекоммуникационного оборудования за счет замены дорогостоящих кристаллических элементов для управления световыми потоками на элементы из стекла.

Группа ученых научно-исследовательской лаборатории «Многофункциональные стеклообразные материалы» НЦМУ СПбПУ впервые опытным путем получила гигантское (в 15 раз) усиление сигнала второй оптической гармоники в поляризованных стеклах. Результаты исследования были опубликованы в научном журнале The Journal of Physical Chemistry Letters.

Появление второй оптической гармоники – это физическое явление, при котором кванты света, проходя через оптически нелинейные материалы, объединяются и образуют кванты с удвоенной энергией. Например, за счет генерации второй гармоники невидимое излучение инфракрасного лазера преобразуется в зеленый свет. Эти же материалы дают возможность управлять световыми лучами, прикладывая к материалу электрическое напряжение, то есть создавать электрооптические устройства.

Поляризация стекол (обработка во внешнем электрическом поле) используется для модификации их механических и химических свойств, формирования микрооптических структур, дифракционных решеток, записи информации в стеклах, а также для придания стеклам оптически нелинейных свойств кристалла, в частности для генерации второй оптической гармоники.

Исследователи СПбПУ впервые доказали, что дополнительная холодная поляризация натриево-силикатного стекла при комнатной температуре приводит к увеличению интенсивности второй гармоники более чем на порядок. После дополнительной холодной поляризации нелинейные свойства стекла приближаются к нелинейным свойствам кристаллического ниобата лития, который широко используется на рынке телекоммуникаций, например, в оптических переключателях и модуляторах, оптико-волоконных системах связи.

Полученные результаты носят как фундаментальный, так и прикладной характер. Так, натриево-силикатные стекла, в которых наблюдается этот эффект, стоят гораздо дешевле кристаллического ниобата лития и других кристаллов, что обусловливает коммерческую привлекательность таких стекол как нелинейных оптических материалов в интегрально-оптических удвоителях частоты, а также электрооптических модуляторах, которые полностью интегрированы в оптические волокна или оптические волноводы на основе стекла.

«Полученный фундаментальный результат – это новый взгляд на природу оптической нелинейности в поляризованных щелочесодержащих стеклах. Примечательно, что процесс холодной поляризации можно повторять многократно. После релаксации нелинейности, которая неизбежно происходит через какое-то время, можно повторить холодную поляризацию, чтобы восстановить усиление нелинейного оптического сигнала. В наших экспериментах мы провели пять последовательных циклов «релаксация-холодная поляризация» и даже после последнего цикла наблюдали усиление нелинейного сигнала на уровне примерно 50 процентов по сравнению с первым циклом», – прокомментировала результаты исследования заведующая лабораторией «Многофункциональные стеклообразные материалы» НЦМУ СПбПУ, доктор физико-математических наук Валентина Журихина.

В дальнейшем ученые лаборатории «Многофункциональные стеклообразные материалы» НЦМУ СПбПУ планируют продолжить исследования физики процесса холодной поляризации и зависимости величины полученного эффекта от режимов обработки стекол.

НЦМУ «Передовые цифровые технологии» – консорциум из четырех организаций: Санкт-Петербургского политехнического университета Петра Великого (координатор консорциума), Санкт-Петербургского государственного морского технического университета, Тюменского государственного университета, НИИ гриппа имени А.А. Смородинцева Минздрава России. Программа исследований НЦМУ до 2025 года содержит 35 научных тематик по четырем направлениям: передовые цифровые технологии и технологии «умного» производства, искусственный интеллект; роботизированные системы; материалы нового поколения и аддитивные технологии.  

Источник

НЕТ КОММЕНТАРИЕВ

Оставить комментарий